Table of contents
According to IBM, Artificial Intelligence is what makes computers, robots, and other machines imitate certain abilities of human intellect like learning, reasoning, recognizing objects, problem-solving, and decision-making. According to International Data Corporation, the compound annual rate at which AI will grow is 50.1% by 2021.
One can say that AI is the larger aspect of machine learning and deep learning and the three are kind of interconnected. The credit of the expansion happening in the area of AI in recent times goes to the availability of extensive data and advanced machines that can process this data swiftly and accurately.
So, let’s know more about artificial intelligence and some popular AI programming languages that support AI-based app development in 2022.
Here are the top 6 AI programming languages in 2022 that play a significant role in the development of AI tools.
Python serves as the base language of several technologies and plays a special role in implementing AI apps. Introduced in 1991, Python today enjoys extensive community support. Python is the preferred choice of programming language for AI/ML services.
Merits of Python:
What can you do with Python?
In the case of app development company, Java falls second to Python in the list of trending coding languages for AI-based tools. Java was at the forefront of AI and ML apps previously and is recently replaced by Python as the leading language for AI app building.
Merits of Java:
What can you do with Java?
R is basically a statistical language created from Data Science and Deep Learning. It helps to design statistical apps and is highly suited for implementation in the field of business statistics.
It can be used to manipulate data to further generate statistical reports.
Here are some of its essential benefits:
What can you do with R?
Also Read: Best Ruby Frameworks For Developers
One of the fastest and oldest coding languages, C++ has been the 9th most preferred choice of developers for making AI apps. The development of AI and ML-based applications with C++ have covered a significant distance so far.
Merits of C++:
What can you do with C++?
The second oldest programming language after Fortran, Lisp was created in 1958 by John McCarthy. It was actively used in the 1980s by programmers. List Processing is otherwise known as Lisp. Lisp has laid the founding stones of AI long back.
Merits of Lisp:
What can you do with Lisp?
Artificial Intelligence Markup Language is used as a coding language for Artificial Intelligence (AI) and Machine Learning (ML). Created as a free software community between 1995 to 2002 by Richard Wallace, AIML is the XML dialect.
Merits of AIML:
What can you do with AIML?
We may still not be in times where the implementation of AI is as advanced as depicted in the Avengers: Age of Ultron or The Matrix Trilogy; however, currently, we can see the following practical uses of AI in everyday life.
STT(speech-to-text) is an AI technology that is the principal driving force behind the software, voice-controlled remotes, voice-enabled GPS, voice-driven virtual keyboards, and many other tools. STT helps in recognizing spoken words and transforms them into digitized texts.
Speech-to-Text, Speechnotes, ListNote are few examples of voice recognition software.
Also Read: AI Apps For Android
NLP guides software apps and machines to comprehend, interpret, and generate human text. NLP utilizes sentimental analysis to identify mood, attitude, anger, etc.
Practical applications of NLP are Siri and Alexa.
Identification and classification of objects, people, written texts, and also actions fall under image recognition in AI. It is driven by deep neural networks.
Examples of image recognition include fingerprint ID systems, medical image analysis, self-driving cars, etc.
Although, this has been in use for quite a long time in flying passenger and air force aircrafts. In modern times, autopilot utilizes a combination of GPS, sensors, image recognition, collision avoidance technology, robotics, and NLP.
Starting from vacuum cleaning floors to mopping floors while avoiding hurdles on the path, taking the most effective route of cleaning, and determining the area of the room is what AI-enabled house cleaning robots can do in today’s time.
An example under this category would include iRobot’s Roomba vacuum.
eCommerce websites utilize neural networks for recommending products to users based on their previous purchase activities, geography, time, weather, and various other factors. Such real-time recommendations can boost sales..
Amazon & eBay largely rely on this method of sales.
Antivirus and spam tools employ deep neural networks to identify and render new viruses ineffective.
Norton, Mcafee and many other antivirus applications utilize AI-based virus detection methods.
AI can help automate stock trading to optimise stock portfolios. It can particularly be useful in day trading.
Some of the popular AI-enabled stock trading apps are TrendSpider, Trade ideas, EquBot, Blackboxstocks, etc.
The cab service providers use AI to calculate the ETA, connect passengers with the nearest driver, and do a lot more.
Examples of ride-sharing services include Uber, Lyft, Ola, etc.
So, artificial intelligence is already set to become a dominating factor in the world of information & technology, mathematics, computer science, psychology, linguistics, philosophy, medical science, and many more.
Thus, a lot of advancement is happening around it and the best AI programming languages that can be used for building AI apps have been discussed above. So, you can use a AI coding language of your choice to build AI apps in 2022.